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Abstract. Seismic random processes are characterized by high non-stationarity and, in most cases, by a marked 
variability of frequency contents. The widely used hypothesis modelling seismic signal as a simple product of  
stationary  signal  and  a  deterministic  modulation  function,  consequently,  is  hardly  always  applicable.  Such 
assumption leads to an incorrect  estimation of the frequency contents,  which can significantly influence the 
assessment of structural response to such a seismic event. As a solution, the multicomponent decomposition of 
the  non-stationary  seismic  record  is  presented.  The  wavelet  multiresolution  analysis  is  used  as  a  tool.  An 
example of the seismic response of a simplified structure is given.

1. Introduction

The present  stage of computer development  allows us to perform the simulation of effects of  the  
recorded seismic events on structures. However, every earthquake is a unique event and for the regular  
statistical processing we miss the adequate set of realizations. Hence we try to determine realistic  
characteristics of a particular seismic event, which are able to describe it (in the stochastic manner)  
with  sufficient  accuracy.  Using  these  characteristics  it  should  be  possible  to  calculate  statistical  
properties of the response of the structure. 

The usual form, which is used for representation of non-stationary seismic processes, is a product of  
the deterministic modulation and a stationary signal 
 v(t)= m(t)v0(t) (1)
However, such a simple formula can be applied to the simplest cases only, as it supposes identical  
frequency structure throughout the seismic event. There is no support for such assumptions. On the 
contrary, various types of seismic waves or a dispersion of waves due to the inhomogeneity of the  
subsoil definitely cause significant variation of the frequency contents of seismic records. The use of  
such a simple form has also dangerous consequences: Fourier transform, the tool for the stationary 
case only,  should not  be used,  as well  as the power spectral  density (PSD),  which is defined for  
stationary random processes only. There is no guarantee, that the numerical PSD estimator gives a  
reasonable result in this case.

It is evident, that it is necessary to construct and use a model, which takes such variability of the 
frequency contents into account. This can be done using the evolutionary power spectral density [1].

2. Decomposition of seismic excitation

2.1.  Simple decomposition

Vibrations of the system, caused by a seismic event, serve as a typical example of random kinematic  
excitation produced by the motion of supports. Whatever is the character of the structure, the function 
v(t), describing the movement of foundation soil on the support site, is considered as a known random 
continuous Gaussian non-stationary process. These processes are usually described in the form (1),  
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where  v0(t) is supposed to be Gaussian stationary process and  m (t) is the deterministic modulation 
function.  However,  such multiplicative modulation cannot  assure  anything  more  than the roughly 
constant mean amplitude in time.

An ideal modulation function should be able to describe a sudden and strong start and a slow decay of  
the earthquake as well as the case when the strongest impulse is delayed or the signal contains several 
beats. Among the most used functions belongs double exponential function (2), or the well-known 
function (3) proposed by Saragoni and Hart [2]

 ( )tt eetahtm βα −− −= )()( , tettahtm αβ −= )()( (2,3)

where  h(t) stands for the Heaviside unit step function. Both mentioned functions satisfy sufficiently 
first demand, but they fail in the case of complicated signal. They are usually sufficient for synthetic  
seismograms, but they are not able to follow complicated envelope of a true seismogram. 

For such purpose we prefer more complicated but more flexible spline modulation function. Such a 
modulation function can be symbolically written in the form of
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where  0=t0<....  <tk=T is  a  partition of  the  time  interval  and  BN is  the  B-spline of  degree  N.  The 
polynomial degree can be chosen arbitrarily, but the value N=2 or 3 is completely adequate.

2.2. Multicomponent decomposition

The basic idea here is to split the original process into a sum of processes with (narrow) band-limited  
PSD. In such a case the variation of the frequency contents with time can be considered as negligible.  
In  the  next  step  each  one  of  the  components  can  be  described  using  the  decomposition  (1)  and  
modulation (4). This procedure leads to an approximation of the evolutionary power spectra of the 
non-stationary process. Therefore, we write
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A feasible basis for resolution (5) is provided by wavelet multiresolution analysis applied [3]. Such a 
technique does not impose any requirements on a priori stationarity and periodicity of the process.

2.3. Spectral density approximation

The stationary part of the excitation, either v0(t) or  vi0(t), is usually assumed to be an AR or ARMA 
process. The well-known Kanai-Tajimi spectra (6) or the one proposed by Bolotin  (7)
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are the spectral densities of the continuous ARMA(2,1) and AR(2) processes respectively. The form of 
continuous AR(2) model provides the possibility of construction of a finite differential filter yielding 
the process vi0(t), generated as an output on the basis of the Gaussian white noise. 

The difference between both AR(2) and ARMA(2,1) does not seem to be crucial. Although the more  
complicated ARMA(2,1) form fits usually the computed PSD approximation better than AR(2), the 
difference between both approximation is usually smaller than uncertainty of the PSD estimation. 

3. Response of a structure 

The movement of a linear discrete or discretized structure under kinematic excitation in supports can 
be described by the system 
 )()()()()( ttttt GvvFCuuBuM +=++  (8)
where M,  B,  C, F,  G are matrices of parameters of the system;  u(t) denotes the system response in 
free nodes; and v(t) is the vector of kinematic excitation by random seismic processes in supports. 
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FIG. 1. Lumped mass modelled bridge

Statistical properties of the response of the structure described by eq. (8) can be obtained using various 
methods: There exists analytical formulas for computing the dispersion of the response of a linear 
structure, known as integral spectral analysis method (see [4]) and generalized correlation method [5]. 
Both of them are suitable for the excitation in the form of multicomponent decomposition, with PSD 
in  the  form of  continuous  AR(2)  model  and  spline  modulation  function.  As  a  representative  of 
numerical methods we mention the stochastic Newmark method, introduced by To in [6]. It can adopt 
an arbitrarily modulated discrete ARMA(p,q) random process as excitation. 

4. Seismic response of a simple structure 

Let us demonstrate the whole procedure on a simplified structure, see Fig. 1. As an example of a  
seismic excitation we have chosen Sierra Madre earthquake recorded at Altadena, Eaton Canyon Park  
station, June 28, 1991, E-W component, epicentral distance 49km, peak accel. 1.756 m/s2. The record 
was corrected and double integrated to obtain displacement history. 

The Fig. 2 shows 3 narrow-band components obtained using the wavelet decomposition in its first 
column. The second column gives the respective modulation (quadratic spline). Third column shows 
the  corresponding  stationary  random  processes.  Their  spectral  densities  are  depicted  in  the  last  
column. The solid curve corresponds to the estimated true PSD, the dashed line follows the AR(2) 
approximation (7) and the dotted line shows the ARMA(2,1) approximation (6). 

The stochastic response of the bridge subjected to the seismic excitation in both supports S 1,2 was 
computed using the generalized correlation method and the stochastic Newmark method. The resulting 
variances of the individual nodes are indicated in the Fig. 3. The Fig. 3a shows results of the analysis 
with the input data obtained using the decomposition (1), while the Fig. 3b demonstrates result of the  
generalized correlation method and utilizing multicomponent decomposition according to Fig. 2.

FIG. 2. Sample analysis of three components of the wavelet decomposition of the earthquake record
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 At the first sight one might be surprised by finding out that the maximum value of the dispersion of  
the response (b) is smaller than half of the response in the case (a). The explanation of this fact is  
given by detailed considering of the Fig. 3c with the course of the approximated spectral densities of  
the first three details of dispersion together with the approximated PSD derived according to simple 
decomposition (5). The value of the PSD of the first detail for ω=6.4s-1, (i.e. the first eigenfrequency of 
the bridge), is almost one half (0.043cm2s) of the value of the PSD computed from the stationarized 
part of the classically decomposed seismogram (0.076 cm2s). The incorrect estimate of PSD of  v0(t) 
(see (1)) was caused by its poor stationarity.

ω

c

FIG. 3. (a) Displacement variance of the structure computed using simple decomposition  
(b) Variance computed using multicomponent decomposition of the Sierra Madre record          
(c) Spectral densities used in computation: cases (a) – dashed line and (b) – solid lines

5. Conclusions 

It is coming to light, that the main source of problems in determining of the response of the structure 
to  (random)  excitation  is  not  solely  the  calculation,  but  rather  the  determination  of  correct 
characteristics  of  the  excitation  process.  The  "stationary"  process,  obtained  using  the  simple  
decomposition (1),  usually lacks the  true stationarity,  which prevents us from estimating its  PSD 
correctly.  This  problem  can  be  solved  using  the  multicomponent  decomposition.  Moreover,  the 
multicomponent  decomposition allows us  to describe much broader spectra  using a set  of  simple  
AR(2) processes. It is worth to mention that it is necessary to use the B-spline modulation function 
while deriving the stationary part of a non-stationary signal. 
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